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Contextuality in quantum computation

• 1996. DiVincenzo & Peres: Quantum codewords contradict

local realism

• 2009. Anders & Browne: Contextuality powers measurement-

based quantum computation

• 2014. Howard et al.: Contextuality powers quantum compu-

tation with magic states

• This talk: Contextuality provides state magic for rebits
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1. Review

(a) Hidden variable models & contextuality

(b) Quantum computation with magic states

(c) Wigner functions

2. Quantum computation with magic states on rebits

(a) The trouble with qubits

(b) Computational scheme and matching Wigner function

(c) Negativity and contextuality as resources



Contextuality of QM

What is a non-contextual hidden-variable model?

A  measured     output  λA

C  measured     output  λC

B  measured     output  λB

Ψ

quantum mechanics hidden-variable model

Noncontextuality: Given observables A,B,C: [A,B] = [A,C] = 0:
λA is independent of whether A is measured jointly with B or C.

Theorem [Kochen, Specker]: For dim(H) ≥ 3, quantum-mechanics
cannot be reproduced by a non-contextual hidden-variable model.



Quantum Computation by state injection
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unrestricted classical processing

• Non-universal restricted gate set: e.g. Clifford gates.

• Universality reached through injection of magic states.

+ As of now, leading scheme for fault-tolerant QC.

Computational power is pushed from gates to states



Quantum computation by state injection
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Which properties must the magic

states have to enable universality?

A: Wigner function negativity, contextuality



[quantum] mechanics in phase space

classical

Probability denisty

quantum

Wigner function

[p,q]=i h
_

• The Wigner function

Wψ(p, q) =
1

π

∫
dξ e−2πiξpψ†(q − ξ/2)ψ(q + ξ/2).

is a quasi-probability distribution.



[quantum] mechanics in phase space

Wigner function can 
go negative

Marginals must be
non-negative

p

q

Wigner function negativity is an indicator of quantumess

Which states have positive/ negative Wigner function?



Hudson’s theorem

ψ(x)

Theorem. A pure state ψ has a non-negative Wigner function

if and only if and only if ψ is Gaussian, i.e. ψ(x) ∼ e2πi(xθx+ax).



Wigner functions for qudits
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Wigner functions can be adapted to finite-dimensional state spaces.

• The Wigner function W is linear in ρ.

• The marginals of W are probability distributions.

• W is informationally complete.



Hudson’s theorem for qudits

If the local Hilbert space dimension d is an odd prime, then

Theorem.* [discrete Hudson] A pure state ψ ∈ H⊗nd has a pos-

itive Wigner function if and only if it is a stabilizer state.

Thus, pure stabilizer states are classical because

1. They have non-negative Wigner function.

2. They can be efficiently simulated (Gottesman-Knill).

*: D. Gross, PhD thesis, 2005.



Quantum computation by state injection

The case of odd prime local Hilbert space dimension

Qutrit state space
stabilizer polytope

positive Wigner function
contextual

non-contextual

• Clifford operations cannot introduce negativity

• Set of positive states = set of non-contextual states

• Clifford operations cannot introduce contextuality

Contextuality, Wigner negativity: necessary resources for QC.

M. Howard et al., Nature 510, 351 (2014)



Negativity and contextuality in quantum
computation

Local Hilbert space dimension d = 2



The trouble with d = 2

• The standard Wigner function

Wψ(p, q) =
1

π

∫
dξ e−2πiξpψ†(q − ξ/2)ψ(q + ξ/2).

requires the existence of an inverse of 2 in Fd.

• Does not work in d = 2

⇒ Require a different definition of the Wigner function.



The trouble with d = 2

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

• Mermin’s square: for multiple qubits, have state-

independent contextuality w.r.t. Pauli measurements.

⇒ Not all contextuality present can be attributed to states.

• Worse: Mermin’s square yields contextuality witness

that classifies all 2-qubit quantum states as contextual.



Switching to rebits

We make two changes:

1. At all stages, the density matrix ρ of the processed quantum

state is real w.r.t. the computational basis,

ρ =
(
ρij
)
, ρij = ρji ∈ R.

2. The Clifford gates are replaced by the CSS-ness preserving

Clifford gates as the restricted gate set.

Note that this does not immediately alleviate the problems:

• The local Hilbert space dimension is still d = 2.

• The (rotated) Mermin square embeds into real quantum mechanics.



Tasks

1. Devise universal scheme of quantum computation by state

injection on rebits

2. Construct matching Wigner function

3. Find matching notion of state-dependent contextuality &

establish it as necessary resource



1. The computational scheme
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• Non-universal gate set:

– CSS-ness preserving Clifford gates,

– Measurement of Pauli operators X(aX), Z(aZ),

– Preparation of CSS-states.

• Universality reached through injection of magic states.

• Encode n qubits in n+ 1 rebits.



2. Rebit Wigner function Wρ

x

z
Phase point operator A
at phase space point v

v

W is built from Pauli/ translation operators Ta = Z(aZ)X(aX):

Wρ(v) =
1

2n
TrAvρ, ∀v ∈ Z2

n × Z2
n, (1)

where

A0 =
1

2n
∑

v|vZ ·vX=0

1Tv. (2)

and

Av = TvA0T
†
v, (3)



2. Properties of the rebit Wigner function Wρ

1. Wρ is informationally complete for real ρ,

ρ =
∑
u
Wρ(u)Au. (4)

2. The trace inner product is given as

Trρσ = 2n
∑

u∈Z2n
2

Wρ(u)Wσ(u). (5)

3. For all real density matrices ρ, σ,

Wρ⊗σ = Wρ ·Wσ. (6)



2. Properties of the rebit Wigner function Wρ

Theorem [d = 2 Hudson] A pure n-rebit state has a non-negative

Wigner function if and only if it is a CSS stabilizer state.

⇒ This is why CSS-ness preserving Clifford gates are chosen as

restricted gate set!



3. Non-negativity implies non-contextuality

Lemma. Wρ ≥ 0 −→ Pauli measurements on ρ are described

by a non-contextual HVM.

Proof sketch: A positive Wigner function is a non-contextual HVM.

Consider a POVM with elements Ea. The probability of outcome a is

pa := TrEaρ = 2n
∑
u∈Z2n

2

WEa
(u)Wρ(u).

For the allowed measurements, all WEa
≥ 0. Therefore may identify

{u ∈ Z2n
2 } : set of states

Wρ(u) : probability of state u

2nWEa
: conditional probability of outcome a given u.

Have a non-contextual HVM.



... meanwhile under the rug

Wigner function of Wigner function of Wigner function of
classical state u effect E+ = I+X1

2
effect E− = I−X1

2

Wu(v) = δu,v 2nWE+
= δx1,0 2nWE− = δx1,1

probability for u conditional probability conditional probability
for outcome=+1 for outcome=-1

⇒ For every u, every real Pauli observable has a value ±1.

How does that fit with Mermin’s square?
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3. No contradiction with Mermin’s square

Value assignment for u = 0: Value +1 for all real Tv.

XX

XZ

ZZ

ZX

Z1Z2

X1 X2

-YY

+1 +1

+1

+1+1 +1

+1+1

+1

Π=-I
Π=+1

• However, value assignments need not be consistent in the context
(XZ,ZX,−Y Y ).

• The observables ZX and XZ cannot be simultaneously measured in the
computational scheme.

• Only all-X or all-Z Pauli operators can be physically measured.



3. Negativity does not imply contextuality

Consider the single-rebit state

ρ =
I + xX + zZ

2

1

-1

-1

1

x

z

Wigner function
is negative

• All states ρ are non-contextual. An explicit hidden-variable

model can be constructed for them.



3. Contextuality as resource

XZ ZX -YY
+1+1 +1

+1+1

Π=-I
Π=+1

The expectation 〈I +XZ +ZX −Y Y 〉 is a contextuality witness.
Namely, if

Wρ = 〈I +XZ + ZX − Y Y 〉ρ < 0,

then ρ is contextual.

Proof: Consider HVM state u with value assignment λ. Then

λ(XZ) = λ(X1)λ(Z2),
λ(ZX) = λ(Z1)λ(X2),

λ(−Y Y ) = λ(XX)λ(ZZ) = λ(X1)λ(X2)λ(Z1)λ(Z2)

Therefore, for the witness W applied to an HVM state u,

Wu = 1 + λ(X1)λ(Z2) + λ(Z1)λ(X2) + λ(X1)λ(X2)λ(Z1)λ(Z2)
= (1 + λ(X1)λ(Z2))(1 + λ(Z1)λ(X2))
≥ 0.

�



3. Contextuality as resource

• The contextuality witness Wρ = 〈I + XZ + ZX − Y Y 〉ρ can
indeed take negative values.

Consider ρ = |G〉〈G|, with |G〉 a 2-qubit graph state, such that XZ |G〉 =

ZX |G〉 = −|G〉. Thus, W|G〉〈G| = −2 .

• A very large class of contextuality witnesses can be defined,
such that this class is mapped onto itself under all CSS-ness
preserving Clifford unitaries.

⇒ Contextuality is only maintained or destroyed (measurement),
but never created in CSS-ness preserving operations.

⇒ All contextuality must come from the initial magic states
[=Resource].



Results

• Contextuality and negativity are necessary resources in quan-

tum computation with magic states on rebits.

• State-independent contextuality, as it appears for example in

Mermin’s square and star, is not an obstacle.

arXiv:1409.5170



Open questions

e�cient classical simulatability of
quantum computation with magic states

non-negativity of the Wigner function

non-contextuality

d is an odd prime d=2

• Three notions of classicality collapse into one for d odd, but

not for d = 2. Why is that?



1. Computational scheme

• Use encoding of n qubits in n+ 1 rebits∗:

|Ψ〉 −→ R(|Ψ〉)⊗ |R〉n+1 + I(|Ψ〉)⊗ |I〉n+1.

• Restricted gate set: CSS-ness preserving operations

CNOTs, Hall, Pauli flips, measurements ofZi, Xi.

• Use magic states

|A〉 = |0〉|0〉√
2

+ |1〉|0〉+|1〉2

|B〉 = |0〉|+〉+|1〉|−〉√
2

.

[*] T. Rudolph and L. Grover, Encoded universality using rebits, quant-ph/02



1. Computational scheme

• Devise circuits for the various encoded gates.

X

I/R

I/R

(*)

Z
B

Z

Z

Z

=

Example: circuit for code merging

Purpose: Merge separately encoded ancillas into one code block.


